153 research outputs found

    Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    Get PDF
    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception

    Initial adhesion of bone marrow stromal cells to various bone graft substitutes

    Get PDF
    Purpose: The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro. Methods: Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with beta-tricalcium phosphate (TCP), and pure beta-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7. Results: The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface. Conclusions: Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment. (C) 2011 Korean Academy of Periodontology.This work was supported by a National Research Foundation of Korea Grant funded by the Government of the Republic of Korea (2008-E00580)

    Retrospective study of alveolar ridge preservation compared with no alveolar ridge preservation in periodontally compromised extraction sockets

    Get PDF
    Background To minimize alveolar bone resorption, alveolar ridge preservation (ARP) has been proposed. Recently, interest in improving the feasibility of implant placement has gradually increased, especially in situations of infection such as periodontal and/or endodontic lesions. The aim of this study was to investigate if ARP improves feasibility of implant placement compared with no ARP in periodontally compromised sites. Secondary endpoints were the necessity of bone graft at the time of implant placement and implant failure before loading at ARP compared with no ARP. Material and methods This retrospective study was performed using dental records and radiographs obtained from patients who underwent tooth extraction due to chronic periodontal pathology. Outcomes including the feasibility of implant placement, horizontal bone augmentation, vertical bone augmentation, sinus floor elevation, total bone augmentation at the time of implant placement, and implant failure before loading were investigated. Multivariable logistic regression analysis was performed to examine the influence of multiple variables on the clinical outcomes. Results In total, 418 extraction sites (171 without ARP and 247 with ARP) in 287 patients were included in this study. The ARP group (0.8%) shows significantly lower implant placement infeasibility than the no ARP group (4.7%). Horizontal and vertical bone augmentations were significantly influenced by location and no ARP. Total bone augmentation was significantly influenced by sex, location, and no ARP. Conclusion ARP in periodontally compromised sites may improve the feasibility of implant placement. In addition, ARP attenuate the severity of the bone augmentation procedure

    The effect of periodontitis on recipient outcomes after kidney transplantation

    Get PDF
    Background Recent several reports have demonstrated that periodontitis is prevalent and adversely affects the survival in patients with chronic kidney disease (CKD) or end-stage kidney disease. However, its impact on transplant outcomes remains uncertain. Methods This retrospective cohort study included 136 and 167 patients, respectively, who underwent living donor kidney transplantation (KT) at Seoul National University Hospital from July 2012 to August 2016 and Korea University Hospital from April 2008 to October 2018. We divided patients into three groups according to stages of periodontitis based on a new classification system. Results Patients with severe periodontitis were older, had a higher prevalence of diabetes, a higher body mass index and C-reactive protein level, a lower cardiac output, and were more likely to be smokers, indicating its association with chronic systemic inflammation. After KT, stage IV periodontitis was independently associated with a lower incidence of acute T cell-mediated rejection, suggesting the possible effect of periodontitis on immune function. However, 1-year and 3-year estimated glomerular filtration rates were not different. Among the KT recipients followed up more than 3 years, new-onset cardiovascular disease occurred in nine patients, and coronary artery disease occurred more frequently in patients with stage IV periodontitis. However, diabetes was the independent predictor of new-onset coronary artery disease in multivariate logistic regression analysis. Conclusion Our findings showed that periodontitis might be an important player in determining posttransplant outcomes in recipients. Further interventional trials to test whether treating periodontitis could modify transplant outcome are needed

    Current advances of epigenetics in periodontology from ENCODE project: a review and future perspectives

    Get PDF
    Background The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. Main body Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. Conclusions In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.This research was supported by Grants from MSIP/IITP (2017-0-00398) and Basic Science Research Program (2016R1A1A3A04004838/2020R1 C1C1005830) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning

    Adenovirus Encoding Human Platelet-Derived Growth Factor-B Delivered to Alveolar Bone Defects Exhibits Safety and Biodistribution Profiles Favorable for Clinical Use

    Full text link
    Abstract Platelet-derived growth factor (PDGF) gene therapy offers promise for tissue engineering of tooth-supporting alveolar bone defects. To date, limited information exists regarding the safety profile and systemic biodistribution of PDGF gene therapy vectors when delivered locally to periodontal osseous defects. The aim of this preclinical study was to determine the safety profile of adenovirus encoding the PDGF-B gene (AdPDGF-B) delivered in a collagen matrix to periodontal lesions. Standardized alveolar bone defects were created in rats, followed by delivery of matrix alone or containing AdPDGF-B at 5.5-108 or 5.5-109 plaque-forming units/ml. The regenerative response was confirmed histologically. Gross clinical observations, hematology, and blood chemistries were monitored to evaluate systemic involvement. Bioluminescence and quantitative polymerase chain reaction were used to assess vector biodistribution. No significant histopathological changes were noted during the investigation. Minor alterations in specific hematological and blood chemistries were seen; however, most parameters were within the normal range for all groups. Bioluminescence analysis revealed vector distribution at the axillary lymph nodes during the first 2 weeks with subsequent return to baseline levels. AdPDGF-B was well contained within the localized osseous defect area without viremia or distant organ involvement. These results indicate that AdPDGF-B delivered in a collagen matrix exhibits acceptable safety profiles for possible use in human clinical studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78106/1/hum.2008.114.pd

    Effect of immobilized cell-binding peptides on chitosan membranes for osteoblastic differentiation of mesenchymal stem cells

    Get PDF
    Two cell-binding domains from FGF-2 (fibroblast growth factor-2) were shown to increase cell attachment and osteoblastic differentiation. Two synthetic peptides derived from FGF-2, namely residues 36-41 (F36; PDGRVD) and 77-83 (F77; KEDGRLL), were prepared and their N-termini further modified for ease of surface immobilization. Chitosan membranes were used in the present study as mechanical supportive biomaterials for peptide immobilization. Peptides could be stably immobilized on to the surface of chitosan membranes. The adhesion of mesenchymal stem cells to the peptide (F36 and F77)-immobilized chitosan membrane was increased in a dose-dependent manner and completely inhibited by soluble RGD (Arg-Gly-Asp) and anti-integrin antibody, indicating the existence of an interaction between F36/F77 and integrin. Peptide-immobilized chitosan supported human bone-marrow-derived mesenchymal-stem-cell differentiation into osteoblastic cells, as demonstrated by alkaline phosphate expression and mineralization. Taken together, the identified peptide-immobilized chitosan membranes were able to support cell adhesion and osteoblastic differentiation; thus these peptides might be useful as bioactive agents for osteoblastic differentiation and surface-modification tools in bone regenerative therapy.This study was supported in part by the KOSEF (Korea Science and Technology Foundation) Nanobiotechnology Development Program [no. 2007-00952] entitled Regenomics (innovative surface activation of regenerative biomaterials), in part by the Korea Research Foundation [grant no. D00192] and in part by an Engineering Research Center grant from KOSEF through the IBEC (Intelligent Biointerface Engineering Center) [grant no. R11-2000-084-09001-0]
    corecore